HEAVY.AI Docs
v8.1.0
v8.1.0
  • Welcome to HEAVY.AI Documentation
  • Overview
    • Overview
    • Release Notes
  • Installation and Configuration
    • System Requirements
      • Hardware Reference
      • Software Requirements
      • Licensing
    • Installation
      • Free Version
      • Installing on Docker
        • HEAVY.AI Installation using Docker on Ubuntu
      • Installing on Ubuntu
        • HEAVY.AI Installation on Ubuntu
        • Install NVIDIA Drivers and Vulkan on Ubuntu
      • Installing on Rocky Linux / RHEL
        • HEAVY.AI Installation on RHEL
        • Install NVIDIA Drivers and Vulkan on Rocky Linux and RHEL
      • Getting Started on AWS
      • Getting Started on GCP
      • Getting Started on Azure
      • Getting Started on Kubernetes (BETA)
      • Upgrading
        • Upgrading HEAVY.AI
        • Upgrading from Omnisci to HEAVY.AI 6.0
        • CUDA Compatibility Drivers
      • Uninstalling
      • Ports
    • Services and Utilities
      • Using Services
      • Using Utilities
    • Executor Resource Manager
    • Configuration Parameters
      • Overview
      • Configuration Parameters for HeavyDB
      • Configuration Parameters for HEAVY.AI Web Server
      • Configuration Parameters for HeavyIQ
    • Security
      • Roles and Privileges
        • Column-Level Security
      • Connecting Using SAML
      • Implementing a Secure Binary Interface
      • Encrypted Credentials in Custom Applications
      • LDAP Integration
    • Distributed Configuration
  • Loading and Exporting Data
    • Supported Data Sources
      • Kafka
      • Using HeavyImmerse Data Manager
      • Importing Geospatial Data
    • Command Line
      • Loading Data with SQL
      • Exporting Data
  • SQL
    • Data Definition (DDL)
      • Datatypes
      • Users and Databases
      • Tables
      • System Tables
      • Views
      • Policies
      • Comment
    • Data Manipulation (DML)
      • SQL Capabilities
        • ALTER SESSION SET
        • ALTER SYSTEM CLEAR
        • DELETE
        • EXPLAIN
        • INSERT
        • KILL QUERY
        • LIKELY/UNLIKELY
        • SELECT
        • SHOW
        • UPDATE
        • Arrays
        • Logical Operators and Conditional and Subquery Expressions
        • Table Expression and Join Support
        • Type Casts
      • Geospatial Capabilities
        • Uber H3 Hexagonal Modeling
      • Functions and Operators
      • System Table Functions
        • generate_random_strings
        • generate_series
        • tf_compute_dwell_times
        • tf_feature_self_similarity
        • tf_feature_similarity
        • tf_geo_rasterize
        • tf_geo_rasterize_slope
        • tf_graph_shortest_path
        • tf_graph_shortest_paths_distances
        • tf_load_point_cloud
        • tf_mandelbrot*
        • tf_point_cloud_metadata
        • tf_raster_contour_lines; tf_raster_contour_polygons
        • tf_raster_graph_shortest_slope_weighted_path
        • tf_rf_prop_max_signal (Directional Antennas)
        • ts_rf_prop_max_signal (Isotropic Antennas)
        • tf_rf_prop
      • Window Functions
      • Reserved Words
      • SQL Extensions
      • HeavyIQ LLM_TRANSFORM
  • HeavyImmerse
    • Introduction to HeavyImmerse
    • Admin Portal
    • Control Panel
    • Working with Dashboards
      • Dashboard List
      • Creating a Dashboard
      • Configuring a Dashboard
      • Duplicating and Sharing Dashboards
    • Measures and Dimensions
    • Using Parameters
    • Using Filters
    • Using Cross-link
    • Chart Animation
    • Multilayer Charts
    • SQL Editor
    • Customization
    • Joins (Beta)
    • Chart Types
      • Overview
      • Bubble
      • Choropleth
      • Combo
      • Contour
      • Cross-Section
      • Gauge
      • Geo Heatmap
      • Heatmap
      • Linemap
      • Number
      • Pie
      • Pointmap
      • Scatter Plot
      • Skew-T
      • Table
      • Text Widget
      • Wind Barb
    • Deprecated Charts
      • Bar
      • Combo - Original
      • Histogram
      • Line
      • Stacked Bar
    • HeavyIQ SQL Notebook
  • HEAVYIQ Conversational Analytics
    • HeavyIQ Overview
      • HeavyIQ Guidance
  • HeavyRF
    • Introduction to HeavyRF
    • Getting Started
    • HeavyRF Table Functions
  • HeavyConnect
    • HeavyConnect Release Overview
    • Getting Started
    • Best Practices
    • Examples
    • Command Reference
    • Parquet Data Wrapper Reference
    • ODBC Data Wrapper Reference
    • Raster Data Wrapper Reference
  • HeavyML (BETA)
    • HeavyML Overview
    • Clustering Algorithms
    • Regression Algorithms
      • Linear Regression
      • Random Forest Regression
      • Decision Tree Regression
      • Gradient Boosting Tree Regression
    • Principal Components Analysis
  • Python / Data Science
    • Data Science Foundation
    • JupyterLab Installation and Configuration
    • Using HEAVY.AI with JupyterLab
    • Python User-Defined Functions (UDFs) with the Remote Backend Compiler (RBC)
      • Installation
      • Registering and Using a Function
      • User-Defined Table Functions
      • RBC UDF/UDTF Example Notebooks
      • General UDF/UDTF Tutorial Notebooks
      • RBC API Reference
    • Ibis
    • Interactive Data Exploration with Altair
    • Additional Examples
      • Forecasting with HEAVY.AI and Prophet
  • APIs and Interfaces
    • Overview
    • heavysql
    • Thrift
    • JDBC
    • ODBC
    • Vega
      • Vega Tutorials
        • Vega at a Glance
        • Getting Started with Vega
        • Getting More from Your Data
        • Creating More Advanced Charts
        • Using Polys Marks Type
        • Vega Accumulator
        • Using Transform Aggregation
        • Improving Rendering with SQL Extensions
      • Vega Reference Overview
        • data Property
        • projections Property
        • scales Property
        • marks Property
      • Migration
        • Migrating Vega Code to Dynamic Poly Rendering
      • Try Vega
    • RJDBC
    • SQuirreL SQL
    • heavyai-connector
  • Tutorials and Demos
    • Loading Data
    • Using Heavy Immerse
    • Hello World
    • Creating a Kafka Streaming Application
    • Getting Started with Open Source
    • Try Vega
  • Troubleshooting and Special Topics
    • FAQs
    • Troubleshooting
    • Vulkan Renderer
    • Optimizing
    • Known Issues and Limitations
    • Logs and Monitoring
    • Archived Release Notes
      • Release 6.x
      • Release 5.x
      • Release 4.x
      • Release 3.x
Powered by GitBook
On this page
  • Install Prerequisites
  • Install Kernel Headers
  • Install NVIDIA Drivers and Vulkan
  • Install NVIDIA Drivers Using the NVIDIA Website
  • Install NVIDIA Drivers Using DNF
  • Check NVIDIA Driver Installation
  • Install Vulkan
  • Install CUDA Toolkit ᴼᴾᵀᴵᴼᴺᴬᴸ
Export as PDF
  1. Installation and Configuration
  2. Installation
  3. Installing on Rocky Linux / RHEL

Install NVIDIA Drivers and Vulkan on Rocky Linux and RHEL

PreviousHEAVY.AI Installation on RHELNextGetting Started on AWS

Last updated 8 months ago

Install Prerequisites

Install the Extra Packages for Enterprise Linux (EPEL) repository and other packages before installing NVIDIA drivers.

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

RHEL-based distributions require Dynamic Kernel Module Support (DKMS) to build the GPU driver kernel modules. For more information, see . Upgrade the kernel and restart the machine.

sudo dnf -y upgrade kernel
sudo reboot now

Install Kernel Headers

Install kernel headers and development packages:

sudo dnf -y install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

If installing kernel headers does not work correctly, follow these steps instead:

  1. Identify the Linux kernel you are using by issuing the uname -r command.

  2. Use the name of the kernel (4.18.0-553.el8_10.x86_64 in the following code example) to install kernel headers and development packages:

sudo dnf -y install \
kernel-devel-4.18.0-553.el8_10.x86_64 \
kernel-headers-4.18.0-553.el8_10.x86_64

Install the dependencies and extra packages:

Sudo dnf install -y kernel-devel kernel-headers pciutils dkms

Install NVIDIA Drivers and Vulkan

Although using the NVIDIA website is more time-consuming and less automated, you are assured that the driver is certified for your GPU. Use this method if you are not sure which driver to install. If you prefer a more automated method and are confident that the driver is certified, you can use the DNF package manager method.

Install NVIDIA Drivers Using the NVIDIA Website

If you do not know the GPU model installed on your system, run this command:

lspci -v | egrep "3D|VGA*.NVIDIA" | awk -F '\[|\]' ' { print $2 } '

The output shows the product type, series, and model. In this example, the product type is Tesla, the series is T (as Turing), and the model is T4.

Tesla T4
  1. Select the product type shown after running the command above.

  2. Select the correct product series and model for your installation.

  3. In the Operating System dropdown list, select Linux 64-bit.

  4. In the CUDA Toolkit dropdown list, click a supported version (11.4 or higher).

  5. Click Search.

  6. On the resulting page, verify the download information and click Download.

Move the downloaded file to the server, change the permissions, and run the installation.

chmod +x NVIDIA-Linux-x86_64-*.run
sudo ./NVIDIA-Linux--x86_64-*.runYou might get the following error during installation:

You might receive the following error during installation:

ERROR: The Nouveau kernel driver is currently in use by your system. This driver is incompatible with the NVIDIA driver, and must be disabled before proceeding. Please consult the NVIDIA driver README and your Linux distribution's documentation for details on how to correctly disable the Nouveau kernel driver.

If you receive this error, blacklist the Nouveau driver by editing the /etc/modprobe.d/blacklist-nouveau.conffile, adding the following lines at the end:

blacklist nouveau blacklist lbm-nouveau options nouveau modeset=0 alias nouveau off alias lbm-nouveau off

Install NVIDIA Drivers Using DNF

Install a specific version of the driver for your GPU by installing the NVIDIA repository and using the DNF package manager.

Add the NVIDIA network repository to your system.

sudo dnf config-manager --add-repo \
http://developer.download.nvidia.com/compute/cuda/repos/rhel8/$(uname -i)/cuda-rhel8.repo

Install the driver version needed with dnf. For 8.0, the minimum version is 535.

sudo dnf -y module install nvidia-driver:535-dkms

To load the installed driver, you can run sudo modprobe nvidia or nvidia-smi commands, or , in case of driver upgrade, you can reboot your system to ensure that the new version of the driver is loaded using the command sudo reboot

Check NVIDIA Driver Installation

Run the specified command to verify that your drivers are installed correctly and recognize the GPUs in your environment. Depending on your environment, you should see output confirming the presence of your NVIDIA GPUs and drivers. This verification step ensures that your system can identify and utilize the GPUs as intended.

If you encounter an error similar to the following, the NVIDIA drivers are likely installed incorrectly: NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Please ensure that the latest NVIDIA driver is installed and running.

Install Vulkan

The back-end renderer requires a Vulkan-enabled driver and the Vulkan library to work correctly. Without these components, the database cannot start without disabling the back-end renderer.

To ensure the Vulkan library and its dependencies are installed, use the DNF.

sudo dnf -y install vulkan

Install CUDA Toolkit ᴼᴾᵀᴵᴼᴺᴬᴸ

You must install the CUDA Toolkit if you use advanced features like C++ User-Defined Functions or User-Defined Table Functions to extend the database capabilities.

  1. Add the NVIDIA network repository to your system:

sudo dnf config-manager --add-repo \
http://developer.download.nvidia.com/compute/cuda/repos/rhel8/$(uname -i)/cuda-rhel8.repo

2. List the available CUDA Toolkit versions using the DNF list command

dnf list cuda-toolkit-* | egrep -v config

Available Packages
cuda-toolkit-10-1.x86_64                     10.1.243-1        cuda-rhel8-x86_64
cuda-toolkit-10-2.x86_64                     10.2.89-1         cuda-rhel8-x86_64
cuda-toolkit-11-0.x86_64                     11.0.3-1          cuda-rhel8-x86_64
cuda-toolkit-11-1.x86_64                     11.1.1-1          cuda-rhel8-x86_64
cuda-toolkit-11-2.x86_64                     11.2.2-1          cuda-rhel8-x86_64
cuda-toolkit-11-3.x86_64                     11.3.1-1          cuda-rhel8-x86_64
cuda-toolkit-11-4.x86_64                     11.4.4-1          cuda-rhel8-x86_64
cuda-toolkit-11-5.x86_64                     11.5.2-1          cuda-rhel8-x86_64
cuda-toolkit-11-6.x86_64                     11.6.2-1          cuda-rhel8-x86_64
cuda-toolkit-11-7.x86_64                     11.7.1-1          cuda-rhel8-x86_64
cuda-toolkit-11-8.x86_64                     11.8.0-1          cuda-rhel8-x86_64
cuda-toolkit-12.x86_64                       12.5.0-1          cuda-rhel8-x86_64
cuda-toolkit-12-0.x86_64                     12.0.1-1          cuda-rhel8-x86_64
cuda-toolkit-12-1.x86_64                     12.1.1-1          cuda-rhel8-x86_64
cuda-toolkit-12-2.x86_64                     12.2.2-1          cuda-rhel8-x86_64
cuda-toolkit-12-3.x86_64                     12.3.2-1          cuda-rhel8-x86_64
cuda-toolkit-12-4.x86_64                     12.4.1-1          cuda-rhel8-x86_64
cuda-toolkit-12-5.x86_64                     12.5.0-1          cuda-rhel8-x86_64

3. Install the CUDA Toolkit version using DNF.

sudo dnf -y install cuda-toolkit-<version>.x86_64

4. Check that everything is working correctly:

nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0

CUDA is a parallel computing platform and application programming interface (API) model. It uses a CUDA-enabled graphics processing unit (GPU) for general-purpose processing. The CUDA platform provides direct access to the GPU virtual instruction set and parallel computation elements. For more information on CUDA unrelated to installing HEAVY.AI, see . You can install drivers in multiple ways. This section provides installation information using the or using .

Please check that the driver's version you download meets the HEAVI.AI .

Install the CUDA package for your platform and operating system according to the instructions on the NVIDIA website ).

Please check that the driver's version you download meets the HEAVI.AI .

When installing the driver, ensure your GPU model is supported and meets the HEAVI.AI .

Please review the section and correct any errors.

For more information about troubleshooting Vulkan, see the section.

https://fedoraproject.org/wiki/EPEL
minimum requirements
(https://developer.nvidia.com/cuda-downloads
minimum requirements
minimum requirements
Vulkan Renderer
https://developer.nvidia.com/cuda-zone
NVIDIA website
dnf
Install NVIDIA Drivers
output of nvidia-smi with a system with a correctly working driver