HEAVY.AI Docs
v8.1.0
v8.1.0
  • Welcome to HEAVY.AI Documentation
  • Overview
    • Overview
    • Release Notes
  • Installation and Configuration
    • System Requirements
      • Hardware Reference
      • Software Requirements
      • Licensing
    • Installation
      • Free Version
      • Installing on Docker
        • HEAVY.AI Installation using Docker on Ubuntu
      • Installing on Ubuntu
        • HEAVY.AI Installation on Ubuntu
        • Install NVIDIA Drivers and Vulkan on Ubuntu
      • Installing on Rocky Linux / RHEL
        • HEAVY.AI Installation on RHEL
        • Install NVIDIA Drivers and Vulkan on Rocky Linux and RHEL
      • Getting Started on AWS
      • Getting Started on GCP
      • Getting Started on Azure
      • Getting Started on Kubernetes (BETA)
      • Upgrading
        • Upgrading HEAVY.AI
        • Upgrading from Omnisci to HEAVY.AI 6.0
        • CUDA Compatibility Drivers
      • Uninstalling
      • Ports
    • Services and Utilities
      • Using Services
      • Using Utilities
    • Executor Resource Manager
    • Configuration Parameters
      • Overview
      • Configuration Parameters for HeavyDB
      • Configuration Parameters for HEAVY.AI Web Server
      • Configuration Parameters for HeavyIQ
    • Security
      • Roles and Privileges
        • Column-Level Security
      • Connecting Using SAML
      • Implementing a Secure Binary Interface
      • Encrypted Credentials in Custom Applications
      • LDAP Integration
    • Distributed Configuration
  • Loading and Exporting Data
    • Supported Data Sources
      • Kafka
      • Using HeavyImmerse Data Manager
      • Importing Geospatial Data
    • Command Line
      • Loading Data with SQL
      • Exporting Data
  • SQL
    • Data Definition (DDL)
      • Datatypes
      • Users and Databases
      • Tables
      • System Tables
      • Views
      • Policies
      • Comment
    • Data Manipulation (DML)
      • SQL Capabilities
        • ALTER SESSION SET
        • ALTER SYSTEM CLEAR
        • DELETE
        • EXPLAIN
        • INSERT
        • KILL QUERY
        • LIKELY/UNLIKELY
        • SELECT
        • SHOW
        • UPDATE
        • Arrays
        • Logical Operators and Conditional and Subquery Expressions
        • Table Expression and Join Support
        • Type Casts
      • Geospatial Capabilities
        • Uber H3 Hexagonal Modeling
      • Functions and Operators
      • System Table Functions
        • generate_random_strings
        • generate_series
        • tf_compute_dwell_times
        • tf_feature_self_similarity
        • tf_feature_similarity
        • tf_geo_rasterize
        • tf_geo_rasterize_slope
        • tf_graph_shortest_path
        • tf_graph_shortest_paths_distances
        • tf_load_point_cloud
        • tf_mandelbrot*
        • tf_point_cloud_metadata
        • tf_raster_contour_lines; tf_raster_contour_polygons
        • tf_raster_graph_shortest_slope_weighted_path
        • tf_rf_prop_max_signal (Directional Antennas)
        • ts_rf_prop_max_signal (Isotropic Antennas)
        • tf_rf_prop
      • Window Functions
      • Reserved Words
      • SQL Extensions
      • HeavyIQ LLM_TRANSFORM
  • HeavyImmerse
    • Introduction to HeavyImmerse
    • Admin Portal
    • Control Panel
    • Working with Dashboards
      • Dashboard List
      • Creating a Dashboard
      • Configuring a Dashboard
      • Duplicating and Sharing Dashboards
    • Measures and Dimensions
    • Using Parameters
    • Using Filters
    • Using Cross-link
    • Chart Animation
    • Multilayer Charts
    • SQL Editor
    • Customization
    • Joins (Beta)
    • Chart Types
      • Overview
      • Bubble
      • Choropleth
      • Combo
      • Contour
      • Cross-Section
      • Gauge
      • Geo Heatmap
      • Heatmap
      • Linemap
      • Number
      • Pie
      • Pointmap
      • Scatter Plot
      • Skew-T
      • Table
      • Text Widget
      • Wind Barb
    • Deprecated Charts
      • Bar
      • Combo - Original
      • Histogram
      • Line
      • Stacked Bar
    • HeavyIQ SQL Notebook
  • HEAVYIQ Conversational Analytics
    • HeavyIQ Overview
      • HeavyIQ Guidance
  • HeavyRF
    • Introduction to HeavyRF
    • Getting Started
    • HeavyRF Table Functions
  • HeavyConnect
    • HeavyConnect Release Overview
    • Getting Started
    • Best Practices
    • Examples
    • Command Reference
    • Parquet Data Wrapper Reference
    • ODBC Data Wrapper Reference
    • Raster Data Wrapper Reference
  • HeavyML (BETA)
    • HeavyML Overview
    • Clustering Algorithms
    • Regression Algorithms
      • Linear Regression
      • Random Forest Regression
      • Decision Tree Regression
      • Gradient Boosting Tree Regression
    • Principal Components Analysis
  • Python / Data Science
    • Data Science Foundation
    • JupyterLab Installation and Configuration
    • Using HEAVY.AI with JupyterLab
    • Python User-Defined Functions (UDFs) with the Remote Backend Compiler (RBC)
      • Installation
      • Registering and Using a Function
      • User-Defined Table Functions
      • RBC UDF/UDTF Example Notebooks
      • General UDF/UDTF Tutorial Notebooks
      • RBC API Reference
    • Ibis
    • Interactive Data Exploration with Altair
    • Additional Examples
      • Forecasting with HEAVY.AI and Prophet
  • APIs and Interfaces
    • Overview
    • heavysql
    • Thrift
    • JDBC
    • ODBC
    • Vega
      • Vega Tutorials
        • Vega at a Glance
        • Getting Started with Vega
        • Getting More from Your Data
        • Creating More Advanced Charts
        • Using Polys Marks Type
        • Vega Accumulator
        • Using Transform Aggregation
        • Improving Rendering with SQL Extensions
      • Vega Reference Overview
        • data Property
        • projections Property
        • scales Property
        • marks Property
      • Migration
        • Migrating Vega Code to Dynamic Poly Rendering
      • Try Vega
    • RJDBC
    • SQuirreL SQL
    • heavyai-connector
  • Tutorials and Demos
    • Loading Data
    • Using Heavy Immerse
    • Hello World
    • Creating a Kafka Streaming Application
    • Getting Started with Open Source
    • Try Vega
  • Troubleshooting and Special Topics
    • FAQs
    • Troubleshooting
    • Vulkan Renderer
    • Optimizing
    • Known Issues and Limitations
    • Logs and Monitoring
    • Archived Release Notes
      • Release 6.x
      • Release 5.x
      • Release 4.x
      • Release 3.x
Powered by GitBook
On this page
  • Source Code
  • HTML
  • JavaScript
Export as PDF
  1. APIs and Interfaces
  2. Vega
  3. Vega Tutorials

Creating More Advanced Charts

PreviousGetting More from Your DataNextUsing Polys Marks Type

Source code is located at the end of this tutorial.

This tutorial introduces you to marks by creating a heatmap visualization. The heatmap shows contribution level to the Republican party within the continental United States:

The contribution data are obtained using the following SQL query:

"data": [
  {
   "name": "heatmap_query",
   "sql": "SELECT rect_pixel_bin(conv_4326_900913_x(lon), -13847031.457875465, -7451726.712679257, 733, 733) as x,
           rect_pixel_bin(conv_4326_900913_y(lat), 2346114.147993467, 6970277.197053557, 530, 530) as y,
           SUM(amount) as cnt
           FROM contributions
           WHERE (lon >= -124.39000000000038 AND lon <= -66.93999999999943) AND
               (lat >= 20.61570573311549 AND lat <= 52.93117449504004) AND
               amount > 0 AND
               recipient_party = 'R'
           GROUP BY x, y"
  }
]

The visualization uses a Symbol Type marks type to represent each data item in the heatmap_query data table:

"marks": [
    {
        "type": "symbol",
        "from": {
            "data": "heatmap_query"
        },
        "properties": { ... elided ... }
    }
]

The marks properties property specifies the symbol shape, which is a square. Each square has a pixel width and height of one pixel.

"marks": [
    {
        ... elided ...

        "properties": {
            "shape": "square",
            "x": {
                "field": "x"
            },
            "y": {
                "field": "y"
            },
            "width": 1,
            "height": 1,
            "fillColor": {
                "scale": "heat_color",
                "field": "cnt"
            }
        }
    }
]

Notice that the data x and y location values do not reference a scale. The location values are the values of the SQL query, transformed using extension functions.

The fill color of the square uses the heat_color scale to determine the color used to represent the data item.

Quantize scales are similar to linear scales, except they use a discrete rather than continuous range. The continuous input domain is divided into uniform segments based on the number of values in the output range.

"scales": [
    {
        "name": "heat_color",
        "type": "quantize",
        "domain": [
            10000.0,
            1000000.0
        ],
        "range": [ "#0d0887", "#2a0593", "#41049d", "#5601a4", "#6a00a8",
                   "#7e03a8", "#8f0da4", "#a11b9b", "#b12a90", "#bf3984",
                   "#cb4679", "#d6556d", "#e16462", "#ea7457", "#f2844b",
                   "#f89540", "#fca636", "#feba2c", "#fcce25", "#f7e425", "#f0f921"
        ],
        "default": "#0d0887",
        "nullValue": "#0d0887"
    }
]

A heatmap shows a continuous input domain divided into uniform segments based on the number of values in the output range. This is a quantize scales type. In the example, dollar amounts between $10,000 and $1 million are uniformly divided among 21 range values, where the larger amounts are represented by brighter colors.

Values outside the domain and null values are rendered as dark blue, #0d0887.

Source Code

Advanced Chart Type Tutorial Directory Structure

index.html
/js
  browser-connector.js
  vegaspec.js
  vegademo.js

HTML

Advanced Chart Type Tutorial index.html

<!DOCTYPE html>
<html lang="en">
  <head>
    <title>OmniSci</title>
    <meta charset="UTF-8">
  </head>
  <body>
    <script src="js/browser-connector.js"></script>
    <script src="js/vegaspec.js"></script>
    <script src="js/vegademo.js"></script>

    <script>
    document.addEventListener('DOMContentLoaded', init, false);
    </script>
  </body>
</html>

JavaScript

Advanced Chart Type Tutorial vegademo.js

function init() {
  var vegaOptions = {}
  var connector = new MapdCon()
    .protocol("http")
    .host("my.host.com")
    .port("6273")
    .dbName("omnisci")
    .user("omnisci")
    .password("changeme")
    .connect(function(error, con) {
      con.renderVega(1, JSON.stringify(exampleVega), vegaOptions, function(error, result) {
        if (error) {
          console.log(error.message);
        }
        else {
          var blobUrl = `data:image/png;base64,${result.image}`
          var body = document.querySelector('body')
          var vegaImg = new Image()
          vegaImg.src = blobUrl
          body.append(vegaImg)
        }
      });
    });
}

Advanced Chart Type Tutorial vegaspec.js

const exampleVega = {
  "width": 733,
  "height": 530,
  "data": [
    {
      "name": "heatmap_query",
      "sql": "SELECT rect_pixel_bin(conv_4326_900913_x(lon), -13847031.457875465, -7451726.712679257, 733, 733) as x,
                     rect_pixel_bin(conv_4326_900913_y(lat), 2346114.147993467, 6970277.197053557, 530, 530) as y,
                     SUM(amount) as cnt
                     FROM contributions
                     WHERE (lon >= -124.39000000000038 AND lon <= -66.93999999999943) AND
                           (lat >= 20.61570573311549 AND lat <= 52.93117449504004) AND
                           amount > 0 AND
                           recipient_party = 'R'
                           GROUP BY x, y"
    }
  ],
  "scales": [
    {
      "name": "heat_color",
      "type": "quantize",
      "domain": [
        10000.0,
        1000000.0
      ],
      "range": [ "#0d0887", "#2a0593", "#41049d", "#5601a4", "#6a00a8",
                 "#7e03a8", "#8f0da4", "#a11b9b", "#b12a90", "#bf3984",
                 "#cb4679", "#d6556d", "#e16462", "#ea7457", "#f2844b",
                 "#f89540", "#fca636", "#feba2c", "#fcce25", "#f7e425", "#f0f921"
      ],
      "default": "#0d0887",
      "nullValue": "#0d0887"
    }
  ],
  "marks": [
    {
      "type": "symbol",
      "from": {
        "data": "heatmap_query"
      },
      "properties": {
        "shape": "square",
        "x": {
          "field": "x"
        },
        "y": {
          "field": "y"
        },
        "width": 1,
        "height": 1,
        "fillColor": {
          "scale": "heat_color",
          "field": "cnt"
        }
      }
    }
  ]
};
Symbol Type