HEAVY.AI Docs
v7.2.4
v7.2.4
  • Welcome to HEAVY.AI Documentation
  • Overview
    • Overview
    • Release Notes
  • Installation and Configuration
    • System Requirements
      • Hardware Reference
      • Software Requirements
    • Installation
      • Free Version
      • Installing on CentOS
        • HEAVY.AI Installation on CentOS/RHEL
        • Install NVIDIA Drivers and Vulkan on CentOS/RHEL
      • Installing on Ubuntu
        • HEAVY.AI Installation on Ubuntu
        • Install NVIDIA Drivers and Vulkan on Ubuntu
      • Installing on Docker
        • HEAVY.AI Installation using Docker on Ubuntu
      • Getting Started on AWS
      • Getting Started on GCP
      • Getting Started on Azure
      • Getting Started on Kubernetes (BETA)
      • Upgrading
        • Upgrading HEAVY.AI
        • Upgrading from Omnisci to HEAVY.AI 6.0
        • CUDA Compatibility Drivers
      • Uninstalling
      • Ports
    • Services and Utilities
      • Using Services
      • Using Utilities
    • Executor Resource Manager
    • Configuration Parameters
      • Overview
      • Configuration Parameters for HeavyDB
      • Configuration Parameters for HEAVY.AI Web Server
    • Security
      • Roles and Privileges
      • Connecting Using SAML
      • Implementing a Secure Binary Interface
      • Encrypted Credentials in Custom Applications
      • LDAP Integration
    • Distributed Configuration
  • Loading and Exporting Data
    • Supported Data Sources
      • Kafka
      • Using Heavy Immerse Data Manager
      • Importing Geospatial Data
    • Command Line
      • Loading Data with SQL
      • Exporting Data
  • SQL
    • Data Definition (DDL)
      • Datatypes
      • Users and Databases
      • Tables
      • System Tables
      • Views
      • Policies
    • Data Manipulation (DML)
      • SQL Capabilities
        • ALTER SESSION SET
        • ALTER SYSTEM CLEAR
        • DELETE
        • EXPLAIN
        • INSERT
        • KILL QUERY
        • LIKELY/UNLIKELY
        • SELECT
        • SHOW
        • UPDATE
        • Arrays
        • Logical Operators and Conditional and Subquery Expressions
        • Table Expression and Join Support
        • Type Casts
      • Geospatial Capabilities
        • Uber H3 Hexagonal Modeling
      • Functions and Operators
      • System Table Functions
        • generate_random_strings
        • generate_series
        • tf_compute_dwell_times
        • tf_feature_self_similarity
        • tf_feature_similarity
        • tf_geo_rasterize
        • tf_geo_rasterize_slope
        • tf_graph_shortest_path
        • tf_graph_shortest_paths_distances
        • tf_load_point_cloud
        • tf_mandelbrot*
        • tf_point_cloud_metadata
        • tf_raster_contour_lines; tf_raster_contour_polygons
        • tf_raster_graph_shortest_slope_weighted_path
        • tf_rf_prop_max_signal (Directional Antennas)
        • ts_rf_prop_max_signal (Isotropic Antennas)
        • tf_rf_prop
      • Window Functions
      • Reserved Words
      • SQL Extensions
  • Heavy Immerse
    • Introduction to Heavy Immerse
    • Admin Portal
    • Control Panel
    • Working with Dashboards
      • Dashboard List
      • Creating a Dashboard
      • Configuring a Dashboard
      • Duplicating and Sharing Dashboards
    • Measures and Dimensions
    • Using Parameters
    • Using Filters
    • Using Cross-link
    • Chart Animation
    • Multilayer Charts
    • SQL Editor
    • Customization
    • Joins (Beta)
    • Chart Types
      • Overview
      • Bar
      • Bubble
      • Choropleth
      • Combo
      • Cross-Section
      • Contour
      • Gauge
      • Geo Heatmap
      • Heatmap
      • Histogram
      • Line
      • Linemap
      • New Combo
      • Number
      • Pie
      • Pointmap
      • Scatter Plot
      • Skew-T
      • Stacked Bar
      • Table
      • Text Widget
      • Wind Barb
  • HeavyRF
    • Introduction to HeavyRF
    • Getting Started
    • HeavyRF Table Functions
  • HeavyConnect
    • HeavyConnect Release Overview
    • Getting Started
    • Best Practices
    • Examples
    • Command Reference
    • Parquet Data Wrapper Reference
    • ODBC Data Wrapper Reference
  • HeavyML (BETA)
    • HeavyML Overview
    • Clustering Algorithms
    • Regression Algorithms
      • Linear Regression
      • Random Forest Regression
      • Decision Tree Regression
      • Gradient Boosting Tree Regression
    • Principal Components Analysis
  • Python / Data Science
    • Data Science Foundation
    • JupyterLab Installation and Configuration
    • Using HEAVY.AI with JupyterLab
    • Python User-Defined Functions (UDFs) with the Remote Backend Compiler (RBC)
      • Installation
      • Registering and Using a Function
      • User-Defined Table Functions
      • RBC UDF/UDTF Example Notebooks
      • General UDF/UDTF Tutorial Notebooks
      • RBC API Reference
    • Ibis
    • Interactive Data Exploration with Altair
    • Additional Examples
      • Forecasting with HEAVY.AI and Prophet
  • APIs and Interfaces
    • Overview
    • heavysql
    • Thrift
    • JDBC
    • ODBC
    • Vega
      • Vega Tutorials
        • Vega at a Glance
        • Getting Started with Vega
        • Getting More from Your Data
        • Creating More Advanced Charts
        • Using Polys Marks Type
        • Vega Accumulator
        • Using Transform Aggregation
        • Improving Rendering with SQL Extensions
      • Vega Reference Overview
        • data Property
        • projections Property
        • scales Property
        • marks Property
      • Migration
        • Migrating Vega Code to Dynamic Poly Rendering
      • Try Vega
    • RJDBC
    • SQuirreL SQL
    • heavyai-connector
  • Tutorials and Demos
    • Loading Data
    • Using Heavy Immerse
    • Hello World
    • Creating a Kafka Streaming Application
    • Getting Started with Open Source
    • Try Vega
  • Troubleshooting and Special Topics
    • FAQs
    • Troubleshooting
    • Vulkan Renderer
    • Optimizing
    • Known Issues and Limitations
    • Logs and Monitoring
    • Archived Release Notes
      • Release 6.x
      • Release 5.x
      • Release 4.x
      • Release 3.x
Powered by GitBook
On this page
Export as PDF
  1. Python / Data Science

Using HEAVY.AI with JupyterLab

PreviousJupyterLab Installation and ConfigurationNextPython User-Defined Functions (UDFs) with the Remote Backend Compiler (RBC)

Last updated 3 years ago

HEAVY.AI Enterprise Edition comes with a fully integrated version of . This provides a secure, multi-user notebook environment for data exploration with OmniSci, and is the primary user interface for the HEAVY.AI Data Science Foundation.

You can quickly switch from visual data exploration, to a Data Science environment preloaded with useful open source libraries and tools that work with OmniSci transparently.

You can access , the next generation Jupyter notebook UI from within Immerse via a button located on the dashboard title

In addition, you can also launch JupyterLab from SQL Editor. In this case, a notebook is opened up with the query wrapped in an Ibis expression.

If you are an HEAVY.AI open source edition user, you do not have access to HeavyImmerse, but you can still explore HEAVY.AI with the Data Science Foundation tools.

Using the Anaconda Package Manager

If you are using the Anaconda package manager, you can install the set of Python tools for HEAVY.AI:

conda install -c conda-forge omnisci-pytools

Using the HEAVY.AI Docker Container for Jupyter tools

You can download a prebuilt Docker container and simply start up these tools as a standalone container.

Tools and Utilities

HEAVY.AI provides a collection utilities to work with JupyterLab.

HEAVY.AI Enterprise allows you to control which users have access to JupyterLab and Data Science tools. This is managed as a separate privilege under the HEAVY.AI role-based permissions model. Refer to the instructions for how to set this up for specific users

Using JupyterLab with HEAVY.AI Open Source Edition requires you to connect to HEAVY.AI explicitly from within a Jupyter notebook cell, using or connection syntax. Refer to the or pyomnisci examples for more details.

This is a collection of useful functions and Jupyter cell magics that allows running commands that are typically possible from from inside a notebook environment.

installation
Ibis
py
mapd
Ibis
heavysql
JupyterHub
JupyterLab